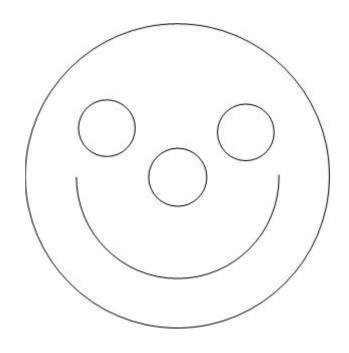
EXPLORING CIRCLES BY USING COMPUTER PROGRAMMING

Learning from pre-written computer programs is more engaging and rewarding than hand calculations and manual plotting

Jerry Sommerville


11/11/2013 2

Overview

- Purpose
 - Demonstrate math concepts using computer programming
- Plan of Action
 - Draw a smiley face with circles
 - This demonstrates the behavior of a circle with offsets
 - Use pre-written computer program to teach math ideas and simple programming language features
 - English and Music composition parallels
- Execution of Plan
 - Explain math/language features in context of larger goal (smiley face)
 - Learn how to dissect or experiment with program to understand steps
 - Let the computer do the hard work
- Evaluation of Results
 - Which method is more engaging and more intuitive?
- Presentation of Solution and Summary

Plan of Action

- Language features
 - Language has graphics primitives (able to draw)
 - Language is easy to remember, intuitive
 - 'Apostrophe(Comment)
 - STOP (Cease execution of steps)
 - SLEEP (Pause execution of steps)
 - Loop:
 - For I = 1 to 5: Next I (Repeat execution of steps)
 - PSET(X,Y) [put a point on the screen]
 - SQR (Square root)

Plan of Action

- Circle equation, x² + y²=R²
- Circle equation with an offset (it is shifted to h, k position)
 - $(x-h)^2 + (y-k)^2 = R^2$
 - Where x, and y are variables (they change)
 - Radius, R ,and offsets h and k are constants (they don't change)
 - Solve for y in terms of x
 - $y = k + SQR(R^2-(x-h)^2),$
 - y=f(x), y is dependent upon x
- Put this equation in a do loop and change y by changing x,

Execution of Plan

- Run Entire Program
- Use comments to explain phases using apostrophe.
- Stop program to explain phases, use "STOP"
- Pause program using "SLEEP"
- Change constants and variables to understand trends
- Edit program to explore other functions and language features

11/11/2013 6

Evaluation of Results

- When you compare manual (conventional) method vs. computer assisted method
 - Which method is more engaging?
 - Which method is more intuitive?
 - Which requires the most preparation time to teach?
 - Which enhances programming skills better?

Conclusions

- Computer program reduces the burden upon math teachers to convey math concepts.
- It encourages the development of programming skills because students see a purpose for them
- It teaches students to be purposeful (objective oriented)
 while meticulous (detail oriented)
- CANVAS
 - A term coined for this approach
 - Computers, Algebra, Numbers, Visual Aids for Science (C.A.N.V.A.S)
 - The computer screen is used like a canvas in art